
Theorem: 𝜋2 (and therefore 𝜋) is irrational (As if 𝜋 were rational 𝜋2 would be too). Because rational 
numbers are exactly those whose decimals repeat (proven in Level 7.1), 𝜋’s decimals never repeat. 

Levels recommended for proof: 3-5 

Proof: 

Start by assuming 𝜋2 =
𝑎

𝑏
, we aim to derive a contradiction. Define the sequence of integrals 𝐼𝑛 as 

follows: 

- 𝐼0 = 2 
- 𝐼1 = 4𝑏 

- 𝐼𝑛 =
𝑏𝑛

𝑛!
∫ 𝑥𝑛(𝜋 − 𝑥)𝑛 sin(𝑥) 𝑑𝑥

𝜋

0
 (𝑛 ≥ 2) 

We can bound 𝐼𝑛 as follows: It is non-negative since everything in the integral is non-negative and so is 
the coefficient, and 𝑥𝑛(𝜋 − 𝑥)𝑛 is bounded above by 𝜋𝑛𝜋𝑛 = 𝜋2𝑛 whenever x is between 0 and π, and 

therefore the integral can be bounded above by ∫ 𝜋2𝑛 sin(𝑥) 𝑑𝑥
𝜋

0
= 𝜋2𝑛 ∫ sin(𝑥) 𝑑𝑥

𝜋

0
= 2𝜋2𝑛. Therefore 

we can bound 𝐼𝑛 by 2(𝜋2𝑏)𝑛

𝑛!
. Note that when, for example, 𝑛 > 2𝜋2𝑏, the terms 2(𝜋2𝑏)𝑛

𝑛!
 will be at most 

half of the previous term (since the numerator will be multiplied by 𝜋2𝑏 and the denominator by more 
than twice that), therefore these terms eventually tend to 0. Since 𝐼𝑛 is bounded above by these terms 
and never negative, 𝐼𝑛 also tends to 0. 

The idea of the proof will be to show that if 𝜋2 =
𝑎

𝑏
 then 𝐼𝑛 is an integer for all n, which is a problem 

since 𝐼𝑛 is always strictly between 0 and something that tends to 0 (and therefore is less than 1), so 𝐼𝑛 
can never be an integer and this will be our contradiction. 

Now we will do a classic A level further maths problem where we show from algebra that for n at least 
2, 𝐼𝑛 = 2𝑏(2𝑛 − 1)𝐼𝑛−1 − 𝑎𝑏𝐼𝑛−2, which would mean that 𝐼𝑛 is always an integer (since a, b, n, and 
𝐼0, 𝐼1 are all integers) so we will be done. 

It turns out that 𝐼𝑛 =
𝑏𝑛

𝑛!
∫ 𝑥𝑛(𝜋 − 𝑥)𝑛 sin(𝑥) 𝑑𝑥

𝜋

0
 for n=0 and n=1. The proof is that for n=0, the integral 

simplifies to 𝑏
0

0!
∫ 𝑥0(𝜋 − 𝑥)0 sin(𝑥) 𝑑𝑥

𝜋

0
= ∫ sin(𝑥) 𝑑𝑥

𝜋

0
= 2 (it’s kind of cool that the area under one of 

the waves of the sine function is exactly 2 isn’t it), and for n=1, the integral simplifies to 

𝑏 ∫ 𝑥(𝜋 − 𝑥) sin(𝑥) 𝑑𝑥
𝜋

0
= 𝑏𝜋 ∫ 𝑥 sin(𝑥) 𝑑𝑥

𝜋

0
− 𝑏 ∫ 𝑥2 sin(𝑥) 𝑑𝑥

𝜋

0
. Integration by parts on the first 

integral setting 𝑢 = 𝑥,
𝑑𝑣

𝑑𝑥
= sin(𝑥) so 𝑑𝑢

𝑑𝑥
= 1, 𝑣 = −cos (𝑥) gives that it is exactly equal to 

−[𝑥𝑐𝑜𝑠(𝑥)]0
𝜋 − ∫ − cos(𝑥) 𝑑𝑥

𝜋

0
= −(−𝜋 − 0) − 0 = 𝜋. Also, ∫ 𝑥2 sin(𝑥) 𝑑𝑥

𝜋

0
 can be integrated by parts 

if we set 𝑢 = 𝑥2, 𝑑𝑣 = sin(𝑥) 𝑑𝑥 so 𝑑𝑢 = 2𝑥𝑑𝑥, 𝑣 = −cos (𝑥), meaning that the integral is then equal to 

−[𝑥2𝑐𝑜𝑠(𝑥)]0
𝜋 − ∫ −2𝑥 cos(𝑥) 𝑑𝑥

𝜋

0
= −(−𝜋2 − 0) + ∫ 2𝑥 cos(𝑥) 𝑑𝑥

𝜋

0
= 𝜋2 + ∫ 2𝑥 cos(𝑥) 𝑑𝑥

𝜋

0
. 

Integrating the second integral by parts, setting 𝑢 = 2𝑥,
𝑑𝑣

𝑑𝑥
= cos(𝑥) so 𝑑𝑢

𝑑𝑥
= 2, 𝑣 = sin (𝑥), we get that 

∫ 2𝑥 cos(𝑥) 𝑑𝑥
𝜋

0
= [2𝑥𝑠𝑖𝑛(𝑥)]0

𝜋 − ∫ 2 sin(𝑥) 𝑑𝑥
𝜋

0
= (0 − 0) − 4 = −4, therefore the original integral 

∫ 𝑥2 sin(𝑥) 𝑑𝑥
𝜋

0
 is equal to 𝜋2 − 4. Now 𝐼1 = 𝑏𝜋(𝜋) − 𝑏(𝜋2 − 4) = 4𝑏, as required. 

Now the final step is to prove the recurrence relation 𝐼𝑛 = 2𝑏(2𝑛 − 1)𝐼𝑛−1 − 𝑎𝑏𝐼𝑛−2 for n at least 2. 



Consider ∫ 𝑥𝑛(𝜋 − 𝑥)𝑛 sin(𝑥) 𝑑𝑥
𝜋

0
. We will do this by parts. Set 𝑢 = 𝑥𝑛(𝜋 − 𝑥)𝑛, 𝑑𝑣

𝑑𝑥
= sin(𝑥). By the 

product and chain rules, 𝑑𝑢

𝑑𝑥
= 𝑛𝑥𝑛−1(𝜋 − 𝑥)𝑛 − 𝑛𝑥𝑛(𝜋 − 𝑥)−1 = 𝑥𝑛−1(𝜋 − 𝑥)𝑛−1[𝑛(𝜋 − 𝑥) − 𝑛𝑥] =

𝑛𝑥𝑛−1(𝜋 − 𝑥)𝑛−1(𝜋 − 2𝑥). By the integration by parts formula ∫ 𝑢
𝑑𝑣

𝑑𝑥
𝑑𝑥

𝜋

0
= [𝑢𝑣]0

𝜋 − ∫ 𝑣
𝑑𝑢

𝑑𝑥
𝑑𝑥

𝜋

0
, but u 

vanishes (is 0) at 0 and π and therefore uv does too. Therefore ∫ 𝑢
𝑑𝑣

𝑑𝑥
𝑑𝑥

𝜋

0
= − ∫ 𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥

𝜋

0
. Therefore, 

since 𝑣 = − cos(𝑥), ∫ 𝑥𝑛(𝜋 − 𝑥)𝑛 sin(𝑥) 𝑑𝑥
𝜋

0
= 𝑛 ∫ 𝑥𝑛−1(𝜋 − 𝑥)𝑛−1(𝜋 − 2𝑥) cos(𝑥) 𝑑𝑥

𝜋

0
. Now we want 

to integrate this by parts again so  work out the derivative of 𝑥𝑛−1(𝜋 − 𝑥)𝑛−1(𝜋 − 2𝑥). By the product 

rule on the last term, this is equal to −2𝑥𝑛−1(𝜋 − 𝑥)𝑛−1 + (𝜋 − 2𝑥)
𝑑

𝑑𝑥
[𝑥𝑛−1(𝜋 − 𝑥)𝑛−1], but this last 

derivative is just the n-1 version of something whose derivative we already know, so                  
𝑑

𝑑𝑥
[𝑥𝑛−1(𝜋 − 𝑥)𝑛−1] = (𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2(𝜋 − 2𝑥). Therefore the original derivative we wanted, ie 

the derivative of 𝑥𝑛−1(𝜋 − 𝑥)𝑛−1(𝜋 − 2𝑥), is −2𝑥𝑛−1(𝜋 − 𝑥)𝑛−1 + (𝜋 − 2𝑥)2(𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2. 

Therefore for ∫ 𝑥𝑛−1(𝜋 − 𝑥)𝑛−1(𝜋 − 2𝑥) cos(𝑥) 𝑑𝑥
𝜋

0
 we set 𝑢 = 𝑥𝑛−1(𝜋 − 𝑥)𝑛−1, 𝑑𝑣

𝑑𝑥
= cos(𝑥), so now 

we have 𝑣 = sin(𝑥), 𝑑𝑢

𝑑𝑥
= −2𝑥𝑛−1(𝜋 − 𝑥)𝑛−1 + (𝜋 − 2𝑥)2(𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2. This time v vanishes 

at 0 and π so we reduce to − ∫ 𝑣
𝑑𝑢

𝑑𝑥
𝑑𝑥

𝜋

0
 

= ∫ [2𝑥𝑛−1(𝜋 − 𝑥)𝑛−1 − (𝜋 − 2𝑥)2(𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2]sin (𝑥)𝑑𝑥
𝜋

0
. By some algebra, this is 

∫ [2𝑥𝑛−1(𝜋 − 𝑥)𝑛−1 − (𝜋2 − 4𝑥(𝜋 − 𝑥))(𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2]sin (𝑥)𝑑𝑥
𝜋

0
. This is therefore equal to 

∫ [(2 + 4(𝑛 − 1))𝑥𝑛−1(𝜋 − 𝑥)𝑛−1 − (𝜋2)(𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2]sin (𝑥)𝑑𝑥
𝜋

0
. 

Ok so putting all this together 

 𝐼𝑛 =
𝑏𝑛

𝑛!
∫ 𝑥𝑛(𝜋 − 𝑥)𝑛 sin(𝑥) 𝑑𝑥

𝜋

0
=

𝑏𝑛

(𝑛)!
𝑛 ∫ 𝑥𝑛−1(𝜋 − 𝑥)𝑛−1(𝜋 − 2𝑥) cos(𝑥) 𝑑𝑥

𝜋

0
 

=
𝑏𝑛

(𝑛−1)!
[∫ [(2 + 4(𝑛 − 1))𝑥𝑛−1(𝜋 − 𝑥)𝑛−1 − (𝜋2)(𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2] sin(𝑥) 𝑑𝑥

𝜋

0
]  

= 𝑏
𝑏𝑛−1

(𝑛−1)!
∫ [(2 + 4(𝑛 − 1))𝑥𝑛−1(𝜋 − 𝑥)𝑛−1] sin(𝑥) 𝑑𝑥

𝜋

0
−

𝑏2𝜋2

𝑛−1

𝑏𝑛−2

(𝑛−2)!
[∫ [(𝑛 − 1)𝑥𝑛−2(𝜋 − 𝑥)𝑛−2] sin(𝑥) 𝑑𝑥

𝜋

0
]  

 = 𝑏𝐼𝑛−1(2 + 4(𝑛 − 1)) − 𝑏2𝜋2 𝑏𝑛−2

(𝑛−2)!
[∫ [𝑥𝑛−2(𝜋 − 𝑥)𝑛−2] sin(𝑥) 𝑑𝑥

𝜋

0
] 

= 2𝑏(2𝑛 − 1)𝐼𝑛−1 − 𝑎𝑏𝐼𝑛−2 where we have used the fact that 𝜋2 =
𝑎

𝑏
. This completes the proof of the 

formula so we are done. 

 


